Application of the Teager-Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements.
نویسندگان
چکیده
PURPOSE The primary aim of this study is to investigate the potential benefit of the Teager-Kaiser Energy Operator (TKEO) as data pre-processor, in an autonomous burst detection method to classify electromyographic signals of the (fore)arm and hand. For this purpose, optimal settings of the burst detector, leading to minimal detection errors, need to be known. Additionally, the burst detector is applied to real muscle activity recorded in healthy adults performing reach-to-grasp movements. METHODS The burst detector was based on the Approximated Generalized Likelihood Ratio (AGLR). Simulations with synthesized electromyographic (EMG) traces with known onset and offset times, yielded optimal settings for AGLR parameters "window width" and "threshold value" that minimized detection errors. Next, comparative simulations were done with and without TKEO data pre-processing. Correct working of the burst detector was verified by applying it to real surface EMG signals obtained from arm and hand muscles involved in a submaximal reach-to-grasp task, performed by healthy adults. RESULTS Minimal detection errors were found with a window width of 100 ms and a detection threshold of 15. Inclusion of the TKEO contributed significantly to a reduction of detection errors. Application of the autonomous burst detector to real data was feasible. CONCLUSIONS The burst detector was able to classify muscle activation and create Muscle Onset Offset Profiles (MOOPs) autonomously from real EMG data, which allows objective comparison of MOOPs obtained from movement tasks performed in different conditions or from different populations. The TKEO contributed to improved performance and robustness of the burst detector.
منابع مشابه
Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm
This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...
متن کاملK-Complex Detection Based on Synchrosqueezing Transform
K-complex is an underlying pattern in the sleep EEG. Due to the role of sleep studies inneurophysiologic and cognitive disorders diagnosis, reliable methods for analysis and detection of this patternare of great importance. In our previous work, Synchrosqueezing Transform (SST) was proposed for analysisof this pattern. SST is an EMD-like tool, which benefits from wavelet transform and reallocat...
متن کاملTeager-Kaiser Operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio.
A temporal analysis of electromyographic (EMG) activity has widely been used for non-invasive study of muscle activation patterns. Such an analysis requires robust methods to accurately detect EMG onset. We examined whether data conditioning, supplemented with Teager-Kaiser Energy Operator (TKEO), would improve accuracy of the EMG burst onset detection. EMG signals from vastus lateralis, collec...
متن کاملUse of the Teager-Kaiser energy operator for condition monitoring of a wind turbine gearbox
This paper deals with the condition monitoring of a wind turbine gearbox under varying operating conditions, which cause nonstationarity. The gearbox vibration signals are decomposed into a set of monocomponent signals using the Empirical Mode Decomposition (EMD) method. The Teager-Kaiser Energy Operator (TKEO) in combination with an energy separation method is also presented as an alternative ...
متن کاملMovement characteristics of upper extremity prostheses during basic goal-directed tasks.
BACKGROUND After an upper limb amputation a prosthesis is often used to restore the functionality. However, the frequency of prostheses use is generally low. Movement kinematics of prostheses use might suggest origins of this low use. The aim of this study was to reveal movement patterns of prostheses during basic goal-directed actions in upper limb prosthetic users and to compare this with exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta of bioengineering and biomechanics
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2016